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This paper brings the molten alkali metals into the scope of a new statistical 
mechanical equation of state that is known to satisfy normal fluids over the 
whole range. As for normal fluids, the latent heat of vaporization and density 
at freezing temperature are the only inputs (scaling factors). The corresponding-_ 
states correlation of normal fluids is used to calculate the second virial coef- 
ficient, B2(T), of alkali metals, which is scarce experimentally and its calculation 
is complicated by dimer formation. Calculations of the other two temperature- 
dependent constants, ~(T) and b(T), follow by scaling. The virial coefficients of 
alkali metals cannot be expected to obey a law of corresponding states for nor- 
mal fluids. The fact that two potentials are involved may be the reason for this. 
Thus, alkali metals have the characteristics of interacting through singlet and 
triple potentials so that the treatment by a single potential here is fortuitous. 
The adjustable parameter of the equation of state, F, compensates for the uncer- 
tainties in B2(T). The procedure used to calculate the density of liquids Li 
through Cs from the freezing line up to several hundred degrees above the 
boiling temperatures. The results are within 5 %. 

KEY WORDS: cohesive energy; equation of state; molten alkali metals; 
statistical mechanics. 

1. I N T R O D U C T I O N  

A knowledge of P - V - T  behavior of molten metals is required for the 
assessment of various aspects of metallurgical and processing operations. 
Because of their high heats of vaporization alkali metals, in particular, are 
of special interest in that they can be used in nuclear power plants and 
other heat transfer processes, as coolants at high temperatures and 
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pressures. Their equilibrium thermodynamic properties have not been 
investigated widely because of the difficult experimental conditions, i.e., 
high temperatures and low vapor pressures. 

Metals in liquid and gaseous states can be treated as simple 
monatomic systems, and like the normal fluids they are examples of 
systems to which the (group) law of corresponding states [1], equation of 
state [23, and law of rectilinear density [3, 4] are applied. In particular, 
alkali metals have been investigated and Ewing et al. [2] have proposed a 
quisichemical equation of state based on the fact the vapor state of these 
metals is composed of partial monatomic and higher-order molecular 
species. Other efforts involve NRL virial equations of state of vapor [2] 
and analytical equations of state for the liquid state [5]. 

Monomers of alkali metals can interact by two possible singlet- and 
triplet-type potentials. The variety of the degree of dimerization and higher- 
order polyatoms among the metals of the group makes them a complex set 
to be treated by the same potential function. Values of the second virial 
coefficient, which is the main parameter in studying the equilibrium ther- 
modynamic properties, are not available over an appreciable range of tem- 
perature and there is no agreement between theory and experiment, where 
it is applicable. Sannigrahi et al. [6] have used the Morse and Rydberg 
potential functions to calculate the total second virial coefficient from the 
manifold of singlet and triplet ground electronic states of the dimer. The 
results roughly compare with the P-I , ' -T  data of Na, K, and Cs vapors 
that have been reported (for high temperatures only) in the literature. 
Nieto de Castro et al. [7] and Fialho et al. [8, 9] have conducted series 
of calculations of equilibrium and transport properties for monatomic 
systems of alkali metal vapors, respectively. They argued that the inter- 
pretation of experimental data for thermophysical properties of alkali metal 
vapors is complicated by the formation of dimers even at low pressures. 
It follows that the calculations for monatomic species should produce 
independent information for the zero-density limits of the experimental 
properties [ 7-9 ]. 

In the circumstances where the experimental data for the second virial 
coefficient are scarce and theoretical calculations are not in a reasonable 
agreement with experimental data, prediction of thermodynamic properties 
is an alternative to remedy the experimental difficulties. The main purpose 
of the present work is to extend previous applications of statistical 
mechanical equations of state [ 10, 11 ] to include alkali metals in the liquid 
state. 

With the recent advancement in statistical mechanical theories, the 
physical behavior of the liquid state of matter can be considered more 
extensively. The new analytical equation of state based on statistical 
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mechanical perturbation theory [ 12] predicts accurate physical properties 
for both spherical and molecular fluids. The equation is shown to be good 
in that it can be used to predict the thermodynamic properties of com- 
pressed liquids from the freezing line up to the critical point without 
applying the critical parameters or acentric factors. Knowing the inter- 
molecular potential function, one can calculate the second virial coefficient, 
B2(T), as one of the parameters of the equation of state. The other two 
temperature-dependent constants in the equation of state that can be 
calculated by integration are e(T), which takes care of the softness of the 
potential function and is equivalent to the contribution of the repulsive side 
of the potential function to B2(T), and b(T) which is the analogue of the 
van der Waals covolume. The Carnahan-Starling equation of state has 
been adopted in the equation as G(bp). G(bp)-' is a linear function of bp 
only and, in its final form [Eq. (2), Section 2], demonstrates a principle of 
corresponding states [ 10]. The results are remarkably good when applied 
to Lennard-Jones (12-6) liquids. 

In this paper, we present a procedure for the establishment of tem- 
perature-dependent parameters for alkali metals to be used in the equation 
of state. This could be done by using two scaling constants, the cohesive 
energy density at the boiling and the density at the triple point. The 
monomers of metals in the vapor state interact through singlet- and triplet- 
type potentials, but the present results show that the treatment by a single 
Lennard-Jones (12-6) potential to calculate temperature-dependent con- 
stants of the equation of state, e(T) and b(T), applies to alkali metals quite 
well. This indicates neither that the dual nature of forces is contradictory 
nor that Lennard-Jones (12-6) model is the best potential function for 
alkali metals in vapor state. 

It should be considered that the cohesive energy density obtained from 
vapor-pressure data does not alter the equation of state due to the forma- 
tion of polyatoms in the metallic vapor, because it is assumed that the 
structure of the vapor is ordered with temperature (of boiling). It is evident 
just by argument. 

2. EQUATION OF STATE 

We summarize the results of derivation of the statistical mechanical 
equation of state, while the details can be found elsewhere [ 12-14]. The 
equation of state is 

P/pRT= 1 -- (c~ - B2) p/( 1 + 0.22Fbp) + o~pG(bp) ( 1 ) 

where 

G(bp) ~ 1/(1 - Fbp) (2) 
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and P is the pressure, p is the molar density, R T  is the thermal energy per 
mole at temperature T, B2 is the second virial coefficient, 0c is the contribu- 
tion of repulsive side of the potential function to B2, and b is the analogue 
of the van der Waals covolume. G(bp) is the average effective pair distribu- 
tion function at contact for equivalent hard convex bodies. It is a function 
of bp only and G(bp) -~ versus bp is linear over the whole range from the 
freezing line up to the critical point with a slope of F, depending on 
the particular substance, e and b are related by b = 0c + T(do~/dT). From the 
P - V - T  data together with the value of ~, b, and B2, F can be calculated 
by successive approximation in accordance to Eq. (1). For noble gases, the 
value of F at the triple point equals 0.381. This parameter along with other 
parameters is one of the constants that characterizes a particular system. 
The P - V - T  data collapse to a single line with slope F when G(bp) -~ is 
plotted versus bp. 

If the details of the potential are known, B_,(T), e(T), and b(T) can be 
calculated by integration. Different potential functions have already been 
tried [ 14]. Although the Aziz potential functions [ 14, 15] are known to be 
the most accurate for noble gases, but for most practical purposes, the 
Lennard-Jones (12-6) potential works adequately. Thus, in practice, either 
B2(T) can be calculated from Boyle's volume and Boyle's temperature or, 
if available, its experimental value can be used. 

3. ALKALI METALS 

For alkali metals, neither an accurate potential functions nor 
experimental values of B2(T) over the whole range of temperatures are 
known. Instead we propose that the B2(T) values be calculated from a 
corresponding-states correlation with normal fluids [ 10, 11 ]. At this point 
we are not concerned with the uncertainties in B?.(T), because the 
adjustable parameter of the equation of state, F, compensates for the 
associated uncertainties. The only two constants in the correlation are 
the density at the triple point, Ptr, and the cohesive energy, which is likely 
to be substituted by latent heat of vaporization, AHv. In the correlation 
[10] 

with 

B*(T) = B2(T) ?tr = A  +B(AH,,/RT) 2 + C(AH,,/RT) 4 (3) 

A =0.403891, B =  --0.076484, C = - 0 . 0 0 0 2 5 0 4  

Once the B,_(T) values are known, the calculation of ~(T) and b(T) follows 
from the scaling constants. This can be done since 0c(T) and b(T) are rather 
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insensitive to the details of the shape of the potential function. Using the 
data for Lennard-Jones (12-6) potential, Boushehri and Mason [ 10] have 
obtained the following expressions: 

0~pt r - - - - -  a I {exp[ --c~ (RT/AH,,)] } + a2{ 1 - exp[ --c2(AH,,/RT)I/4] } (4) 

bpt r = a l l  1 - cI(RT/AH,,)] exp[ -c I (RT/AH, , )  ] 

+ a~_{ 1 -- [ 1 + 0.25c2(AH,,/RT)'/4]} exp[ -c2(AH, , /RT)  1/4] (5) 

with 

at = --0.1053, a2 = 2.9359 

cl = 5.7862, c2 = 0.7966 

Using AHv and Ptr data, in the final step, we calculate the value of F using 
Eqs. (3), (4), (5), and (1), respectively, as the constant that characterizes 
the equation of state of a particular system. For the calculation of F, a 
single iteration at the triple point is sufficient because it is just a correction 
factor. 

4. RESULTS AND DISCUSSION 

Although the uncertainty associated with extrapolation cannot be 
ruled out, the corresponding-states correlation for calculating the second 
virial coefficient is of great value since the extrapolation to the metallic 
region yields parameters of the analytical equation of state. The second 
virial coefficients of alkali metal cannot expected to obey a law of 
corresponding states with normal fluids. The fact that two potentials are 
involved makes this almost impossible. In other words, alkali metals have 
the unfortunate characteristics of interacting through singlet and triplet 
potentials so that the treatment by single potential here is fortuitous. The 
observation here can be interpreted that all metals of the group obey nearly 
the same two-parameter intermolecular pair potential energy functions of 
singlet and triplet, from which a weighted average (of singlet and triplet) 
second virial coefficient can be calculated [6, 7, 16]. Again, we emphasis 
that F incorporates any uncertainties in the calculated B2(T) values. In this 
way we get an estimate of the second virial coefficient of alkali metals 
vapor over the entire range of temperature to be used in Eq. (1). This is 
of special interest since no experimental data at low temperatures are 
available. It is worth noting that the correlation is a basis to simplify the 
calculation by avoiding the use of an intermolecular potential function, 
which is complicated due to the dimer formation. 
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Fig. 1. Deviation plot for density of alkali metals. The points are 
( [] ) lithiu m, ( �9 ) sodium, (/', ) potassium, ( �9 ) rubidium, and 
( O ) cesium. 

Two vapor -p ressu re  da t a  points ,  to calcula te  the hea t  o f  vapor iza t ion ,  
and  the densi ty  at  the t r iple  po in t  are sufficient to es t imate  the the rmo-  
dynamic  proper t ies  f rom near-freezing t empe ra tu r e  up  to several  hundred  
degrees above  the boi l ing tempera ture .  Us ing  P-T d a t a  [ 1 7 ] ,  we have 
ca lcula ted  the densi ty  of  Li, Na,  K, Rb, and  Cs and  the results are shown 
in Table  I. In  metals ,  a l t hough  the in te ra tomic  poten t ia l s  are  inherent ly  dif- 
ferent in the l iquid and v a p o r  states,  the Eq. (1) wi th  the L e n n a r d - J o n e s  
(12-6)  po ten t ia l  used to calcula te  a ( T )  and  b(T) still p roduces  results  
wi th in  reasonable  accuracy  (of  5 %) .  This  can be a t t r ibu ted  to  the fact tha t  
0c(T) and b(T)  do  no t  depend  on the detai ls  of  the po ten t ia l  function. The  
p lo t  in Fig. 1 shows the dev ia t ion  in dens i ty  for a lka l i  meta ls  as pred ic ted  
by  the present  procedure .  

Table I. The Physical Properties of Molten Alkali Metals: Columns 3 and 4 Give the 
Calculated and Experimental Densities, Respectively 

Density (mol. L -L) 
T P Dev. 

(K) (bar) Calc. Expt. (%) 

Lithium 

800 9.572 x 10 -6 66.44 69.60 -- 4.76 
850 3.723 x 10 -5 66.49 68.88 --3.59 
900 1.242 x 10 -4 66.49 68.16 --2.51 
950 3.645 x 10 -4 66.42 67.44 -- 1.54 

1000 9.598 x 10 -4 66.28 66.72 -- 0.66 
1050 2.301 x 10 -3 66.09 65.85 0.36 
1100 5.090 x 10-3 65.84 65.13 1.08 
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T P 
(K) (bar) 

Density (tool. L-J  ) 

Calc. Expt. 
Dev. 
(%) 

1150 1.051 x 10 -2 65.55 64.41 1.74 
1200 2.040 x 10-2 65.17 63.69 2.27 
1250 3.752 x 10 -2 64.76 62.97 2.77 
1300 6.583 x 10 -2 64.29 62.25 3.16 
1350 0.1108 63.78 61.53 3.53 
1400 0.1794 63.21 60.81 3.80 
1450 0.2810 62.59 59.94 4.23 
1500 0.4269 61.93 59.22 4.38 
1550 0.6310 61.22 58.50 4.44 
1600 0.9102 60.47 57.78 4.44 
1650 1.283 59.67 57.06 4.37 
1700 1.771 58.82 56.34 4.21 
1750 2.399 57.92 55.62 3.97 
1800 3.191 56.98 54.90 3.65 
1850 4.179 55.98 54.18 3.21 
1900 5.397 54.94 53.46 2.69 
1950 6.871 53.84 52.74 2.04 
2000 8.639 52.68 52.02 1.25 

450 5.902 x 10 - s  
500 9.363 x 10 -7 
550 8.880 x 10-6 
600 5.749 x 10 -5 
650 2.781 x 10 -4 
700 1.071 x 10 -3 
750 3.432 x 10 -3 
800 9.493 x 10 -3 
850 2.328 x 10 -2 
900 5.154 x 10 -2 
950 0.1049 

1000 0.1986 
1050 0.3535 
1100 0.5965 
1150 0.9607 
1200 1.504 
1250 2.244 
1300 3.216 
1350 4.563 
1400 6.256 
1450 8.383 

Sodium 

37.67 
37.86 
37.96 
37.98 
37.92 
37.78 
37.56 
37.28 
36.93 
36.52 
36.05 
35.5 I 
34.92 
34.28 
33.57 
32.81 
32.00 
31.12 
30.18 
29.16 
28.06 

39.54 
39.02 
38.54 
38.02 
37.49 
37.10 
36.45 
35.93 
35.41 
34.88 
34.36 
33.88 
33.36 
32.84 
32.32 
31.80 
31.27 
30.75 
30.23 
29.71 
29.I9 

-4 .96  
-3 .06  
- 1.53 
-0.11 

1.11 
1.80 

2.96 
3.62 
4.11 
4.49 
4.69 
4.59 
4.47 
4.12 
3.72 
3.10 
2.28 
1.19 

-0 .17 
- 1.89 

--4.03 
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Table I. (Cont#med) 

T 
(K) 

P 
(bar) 

Density (mol. L - I )  

Calc. Expt. 
Dev. 
(%) 

336.4 
400 
450 
500 
550 
600 
650 
7O0 
750 
800 
850 
900 
950 

1000 
1050 
II00 
1150 

312.7 
400 
450 
500 
550 
600 
650 
700 
750 
800 
850 
900 
950 

1000 
1050 

301.6 
400 
450 
500 

1.370 x 10 -9 
1.837x 10-7 
3.209 x 10 -6 
3.128 x 10-s 
1.992 x 10-4 
9.258 • 10 -4 
3.380 x 10-3 
1.022 x I 0 -2 
2.658 • 10 -2 
6.116 x 10 -2 

0.1274 
0.2441 
0.4357 
0.7322 
1.217 
1.864 
2.745 

2.460 x 10 -9 
1.690 x 10 -6 
2.230 x 10 -s  
1.733 x 10-4 
9.194 x 10 -4 
3.664 • 10 -3 
1.174 x 10 -2 
3.174 x 10 -2 
7.493 x 10-2 

0.1584 
0.3059 
0.5476 
0.9206 
1.467 
2.24 I 

2.661 x 10-9 
3.825 x 10 -6 
4.435 x 10 -s  
3.110x 10 -4 

Potassium 

20.19 
20.38 
20.46 
20.46 
20.4 I 
20.29 
20.12 
19.89 
19.61 
19.29 
18.91 
18.50 
18.04 
17.53 
16.98 
16,38 
15.73 

Rubidium 

16.54 
16.72 
16.73 
16.68 
16.57 
16.41 
16.19 
15.92 

15.61 
15.25 

14.84 
14.39 
13.90 

13.36 
12.76 

Cesium 

13.39 
13.54 

13.52 
13.46 

21.18 
20.82 
20.5 I 
20.20 
19.90 
19.62 
19.31 
19.00 
18.70 
18.41 

18.11 
17.80 
17.49 
17.19 
16.85 
16.55 
16.24 

17.33 
16.75 
16.47 
16.21 
15.95 
15.68 
15.48 
15.14 
14.87 
14.60 
14.33 
14.06 
l 3.79 
13.52 
13.26 

13.82 
13.40 
13.19 
12.97 

- 4.90 
-2 .16 
-0.25 

1.27 

2.49 
3.30 
4.03 
4.47 
4.64 
4.56 
4.23 
3.78 
3.05 
1.94 

0.76 
- -  1.04 
- 3.24 

-4 .78 
-0 .18 

1.55 
2.82 
3.74 
4.44 
4.39 
4.90 
4.74 
4.26 
3.43 
2.29 
0,79 

- 1.20 
-3.91 

-3.21 
1.04 

2.44 
3.64 
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Density (mol- L -~) 
T P Dev. 

(K) (bar) Calc. Expt. (%) 

550 1.517 • 10 -3 13.34 12.75 4.42 
600 5.646 x 10 -3 13.17 12.54 4.78 
650 1.708 x 10 -2 12.95 12.32 4.86 
700 4.395 x 10 -2 12.70 12.11 4.65 
750 9.954 x 10 -2 12.40 11.89 4.11 
800 0.2029 12.07 11.68 3.22 
850 0.3798 11.69 11.47 1.88 
900 0.6622 11.28 11.25 0.27 
950 1.086 10.82 11.04 -2.03 

1000 1.693 10.32 10.82 --4.84 

It has been shown that the vapor of alkali metals is composed of 
polyatoms. Because the formation of polyatoms changes the vapor com- 
position, a rectilinear density diameter has been questioned [2]. However, 
consistent liquid and vapor properties have been determined for several 
alkali metals over appreciable range of temperature, and it has been shown 
that the deviation from linearity is small [2]. Therefore it is assumed that 
the changing composition of vapor is ordered with temperature and it does 
not affect significantly the linearity of rectilinear density. In the present 
case, if we determine the molar heat of vaporization, AH,,, from vapor 
pressure data, we notice that, it does not correlate with the molar cohesive 
energy as stated previously. However, a normal equation of state would be 
obtained because AH,, is used in pair with Tb. This means that AH,, is 
ordered with vapor composition and thus with the corresponding tem- 
perature. 

The values of F along with other parameters used in the equation of 
state are listed in Table II. The values of F for all the metals are nearly 
close to each other and this indicates that the structural complexities of all 
the metals that govern the thermophysical properties show similarities and 
thus group laws of corresponding states are applicable. Lithium deviates 
slightly probably due to quantum effects. 

The validity of Eq. (1) for alkali metals is evident by the fact that (i) 
the equation of state could predict the physical properties within a 
reasonable range of accuracy and (ii) the G(bp) -t recognizes its role as a 
virtual strong corresponding states. This is a useful result for subcritical 
region. 

840/1616-9 
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Table II. The Parameters of the Metals 

dHv Ptr Tm Tb 
Metal (kJ - mol -I  ) (mol .m -3) (K) (K) F 

Li 151.203 75360.2 453.7 1615 0.517 
Na 101.764 40362.6 371.0 1151 0.485 
K 83.343 21176.5 336.4 1032 0.472 
Rb 75.578 17325.7 312.7 959 0.473 
Cs 71.841 13821.4 301.6 943 0.466 
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